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Chapter 1 

Introduction 

The ability of adaptive antenna arrays to form controllable, time-variable 

ahtenna patterns allows them to track moving desired-signal sources and 

to suppress signals from moving sources of accidental or intentional inter- 

ference. This flexibility in the antenna pattern is achieved by summing 

the weighted outputs of a number of antenna elements. The instantaneous 

values of the time-varying weights determine the instantaneous array an- 

tenna pattern. The weights are varied according to an assignment rule or 

feedback control law. Different types of adaptive arrays are defined by the 

type of assignment rule or control law used to set the weights. The type 

of adaptive array which should be used in a particular application depends 

on that application. 

In this work, the adaptive array is applied to the reception of a de- 

sired signal in the presence of weak interference signals that need to be 

suppressed. In particular, the reception at a ground station of a desired 

satellite signal in 

from neighboring 

the presence of noise and undesired interference signals 

satellites is considered. Figure 1.1 illustrates the situa- 
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tion. An equivalent problem is that of a satellite receiving a desired signal 

from one of a number of neighboring ground stations. Adaptive arrays are 

applicable since, without adaptation at the receive site, interference signals 

may enter through the receive antenna sidelobes. Furthermore, the satel- 

lite orbits are not perfectly geostationary and more satellites and ground 

stations will enter the signal environment in the future. As seen in Figure 

1.1, the interfering signals enter the receive system through the sidelobes 

of the main antenna causing the input signal-to-interference ratio (SIR) to 

be in the range 10 to 30 dB. Typically, the signal-to-noise ratio (SNR) is 

15 dB. Thus, the interfering signal is weak compared to the desired signal 

and may be several dB below the noise level. 

Though the interference is weak, its presence is arguably more irritat- 

ing than that of noise because of the similarity in the frequency content 

of the desired and interfering signals. For example, in the case of televi- 

sion signals, an interfering station may cause wavy lines or ghost images 

in the television picture in comparison with the less irritating “snow” asso- 

ciated with random noise. Thus, there is a special need to suppress weak 

interfering signals. 

It is appropriate to choose the steered-beam type array for this applica- 

tion because the desired signal direction is known and assumed fixed. An 

array which uses the conventional sample matrix inversion (SMI) algorithm 

as its weight assignment rule is one such steered-beam type array. The SMI 

algorithm was derived so as to maximize the ratio of desired to undesired 

signal powers at the array output under steady state conditions, and given 

the desired signal direction. The undesired signal consists of noise and in- 



12 
D 
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~ 

/ / / / / / I  / /  

Figure 1.1: Ground station receiving desired satellite signal in presence of 
weak interference signals. 
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terference components. In other words, conventional SMI adaptive arrays 

try to maximize the signal-to-interference-plus-noise ratio (SINR) as the 

signal environment changes. Indeed, the environment changes slowly in 

this application. 

The problem with using conventional SMI is that maximum SINR is 

not desired since the presence of interference has been deemed more costly 

than that of noise. It is desired to unequally weight the contributions of 

the interference and noise components in the power ratio to be optimized 

in order to emphasize the importance given to suppressing the interference. 

The modified SMI algorithm discussed in this report maximizes a modified 

SINR (MSINR). The denominator of the MSINR is equal to the interference 

power plus only a fraction of the noise power. 

This report extends the work of Gupta [l] who proposed the modified 

SMI algorithm and showed that the desired interference is theoretically at- 

tainable. In Chapter 2, the conventional SMI algorithm is modified in order 

to maximize the MSINR and the theoretical performance of a modified SMI 

array is presented. In addition, a geometric interpretation is obtained by 

formulating the algorithm in terms of the eigenstructure of the covariance 

matrix of received signals. A simple example to illustrate the effect of 

modifying the algorithm concludes Chapter 2. An actual SMI array system 

makes estimates of a covariance matrix based on a finite number of signal 

samples. This estimation degrades the performance of the real antenna 

system relative to the theoretical performance of Chapter 2. Chapter 3 

describes a computer simulation of real array performance, presents results 

of a statistical analysis of this performance, and investigates, through sim- 

4 



ulations, the nature of the weak interference suppression problem. The last 

chapter draws conclusions about the modified SMI algorithm and suggests 

a future course of action. 
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Chapter 2 

Modification of SMI Algorithm 
and Pertinent Theory 

In this chapter, the standard SMI algorithm for adaptive array weight con- 

trol is presented and modified in order to maximize the MSINR given the 

steering vector (i.e. desired signal direction, element gains in that direc- 

tion, and array geometry). The modified SMI algorithm is shown to yield 

increased interference suppression when the true received-signal covariance 

matrix is assumed known. The chapter begins by introducing the theoret- 

ical array and signal model. The standard SMI algorithm is stated and 

modified in order to theoretically increase interference suppression. The 

eigen-decomposition of the covariance matrix which yields a geometric in- 

terpretation of the algorithm is studied in detail. A simple example con- 

cludes the chapter. Throughout the derivations, complex signal notation 

shall be used. Real signals are obtainable as the real part of the corre- 

sponding complex signal. 

6 



2.1 Theoretical Model and Modification of 
SMI 

Figure 2.1 represents an antenna array with N elements receiving a desired 

signal and M interfering signals. Also present at each element is zero-mean 

complex Gaussian white noise with power u2. The modified SMI algorithm 

introduced later in this section relies on the fact that the smallest eigenvalue 

of the received-signal covariance matrix is an estimate of the noise power u2 

at each element of the array if the dimension of the matrix is greater than 

the total number of received signals. Thus, it is assumed that M 5 N - 2. 

The signal received at the nth antenna element is 
M 

%(t )  = aDn exp[j(UDt + 4Dn)] + almn exp[j(wImt + 4Imn + '$Zm)] + %(t)  
m=l 

(2.1) 
for n = 1 , 2 , .  . . , N. The amplitude, frequency, and phase of the desired 

signal at the nth element of the array are UD,,, OD, and 4Dn,  respectively. 

ulmn, ulm, and q51mn, are analogous parameters for the mth interference 

signal. The amplitudes depend on n since the antenna elements may not 

have identical patterns. Zero phase reference has been chosen as the phase 

of the desired signal in the first element, thus 401 = 0". Specifically, $lmn 

is the phase of the mth interference signal in the nth element with respect 

to its phase in the first element. Also '$lm is the phase of the mth interfer- 

ence signal in the first element with respect to the phase reference and is 

assumed to be a uniform random variable on the interval [0,2n]. The vn(t) 

represents the noise at the nth element and is a member of the ensemble of 

complex Gaussian white noise processes with power equal to u2. All ran- 

7 



dom variables are assumed to be statistically independent. The narrowband 

approximation has been made in that each signal has been represented by 

a single frequency. The phase shifts 4~~ result from the spatial separation 

of the antenna elements and are given by 

J = D or I, (2.2) 
d 
x $J,, = 2?r(n - 1)- sin(OJ) 

for a linear array with equally spaced elements; d is the element separation, 

A is the signal wavelength, and 8J is the signal arrival angle measured from 

broadside. 

The signals received at each element can be combined in a single ( N  x 1) 

signal vector 

where 

where J = D or I, and denotes transpose. The complex weights on the 

8 
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Figure 2.1: An N-element array receiving a desired signal and M interfer- 
ence signals. 
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antenna elements are also combined in an ( N  x 1) weight vector 

(2.9) 

The received signals X ( t )  are weighted and summed to form the array 

output signal shown in Figure 2.1 

s ( t )  = W H ( t ) X ( t )  (2 .10)  

where 

put signal is expressed in terms of its components 

denotes Hermitian transpose. By writing X ( t )  using 2.3, the out- 

M 
4) = 4) + 31m(t) + 3 , ( t )  (2.11) 

m=l 

where s J ( t )  = W H ( t ) X J ( t )  and J = D, Im,  or 7 .  Because of the random 

nature of the output signal the ensemble average or expectation operator 

is used to define the average power of the complex signal s ( t )  

p = Jmt)l21 

= E [ W H X X H W ]  

= W H E [ X X H ] W  

= W H 9 W  (2.12) 

where 9 E [ X X H ]  is the ( N x  N) covariance matrix of the received signals. 

Notice that the time dependency of the weights W and the received signals 

X has been and will continue to be omitted for simplicity. Using 2.3 and 

10 



the assumptions that the received signal components XJ are uncorrelated 

and zero mean, the expectation used to define CP evaluates to 

f E [ X X H ]  

(2.13) 

(2.14) 

where 

for m = 1,2, .  . . M. The I in 2.15 is an (N  x N) identity matrix. We call 

So the desired signal vector or steering vector and Sim the mth interfer- 

ence signal vector. Using 2.13 in 2.12, the output power P may be easily 

expressed as 

p = P D  + PI + pq (2.17) 

where 

11 



Equations 2. 

= WH@zW,and 

Pq = WH@,W = u2WHW. (2.18) 

8 may be used to write the output SINR as 

P D  

p z  + p, S I N R  = 

In this application it is desired to maximize a modified SINR 

P D  

Pz + (1 - F)P,  
M S I N R  = 

WH@DW - - 
WH@zW + (1 - F)u2WHW' 

(2.19) 

(2.20) 

where 0 _< F 5 1. Note that the MSINR reduces to the SINR when F = 0. 

Reed et .d (21 showed that, given the steering vector So defined in 2.16, 

maximum SINR is achieved by choosing the optimal weights as 

where subscript s denotes "standard choice", and where p is an arbitrary 

constant. Notice that the only difference between the SINR and MSINR 

of Equations 2.19 and 2.20 is that the constant (with respect to W)  u2 has 

been replaced by the constant (1 - F ) a 2 .  The weights that optimize the 

MSINR are easily obtained by adjusting the u2 of 2.21 accordingly; 

12 



where r = @ - Fa21. 

A critical result arrived at in Section 2.3 is that the noise power a2 is 

available as the minimum eigenvalue of @ when the signal scenario consists 

of pure sinusoids in white noise incident upon an array with one or more 

unused degrees of freedom [3]. This fact makes possible the implementation 

of the modified weights of 2.22 on a real antenna system since the covariance 

matrix, and thus its minimum eigenvalue, can be estimated. 

A number of observations can be made. Notice that the standard SMI 

algorithm is just a special case of the modified algorithm where F = 0. 

As F is allowed to approach 1, the I’ matrix approaches singularity, since 

ranlc(@D + @Irn) 5 M + 1 5 N - 1 where the first inequality follows from 

2.15 and the second follows from assumption. Choosing F > 0 will decrease 

the INR at the expense of necessarily decreasing the SINR since the choice 

of F = 0 maximized SINR. It is expected that the gain in interference 

suppression will cause a loss in desired signal power and a gain in output 

noise power. The next section studies these gains and losses. 

2.2 Theoretical Performance of the Modi- 
fied SMI Algorithm 

Assuming that the signals received at the array elements are given exactly 

by 2.1, the ensemble average that defines Qi in 2.16 can be taken and the 

steering vector may be found exactly. The minimum eigenvalue of @ is 

u2 as shown in the next section. Using these parameters in 2.22 along 

with a chosen value of F yields the modified weights. Once the weights 

13 



are determined, any performance measure including the INR and the SINR 

can be found. 

The modified SMI algorithm is applied to the practical antenna array 

shown in Figure 2.2 consisting of a high-gain main element and four aux- 

iliary elements with half-wavelength spacing. A desired signal is incident 

from broadside while an interference signal arrives 30 degrees from broad- 

side. The SNR of the desired signal is 14.6 dB in the main antenna while 

it is -10dB in the auxiliaries. The INR is -5 dB in the main antenna and 

is -3 dB in the auxiliaries. This is a good example of weak interference 

since the interference power is about 20 dB beneath the desired signal and 

is even a few dB below the noise. This scenario which is equivalent to that 

considered by Gupta [I] will also be used in the simulations of the next 

chapter . 
A plot of INR and SINR versus the fraction F is given in Figure 2.3. 

These plots, which support the work of Gupta [l], show that a significant 

decrease in INR can be achieved at the slight expense of a small decrease in 

SINR for a properly chosen value of fraction F assuming perfect covariance 

information is available. For example, choosing F = 0.8 yields 11.5 dB 

suppression of interference beneath the standard SMI level (the value when 

F = 0) at the small cost of a 0.3 dB reduction in the SINR. 

2.3 Covariance Matrix Eigenstructure 

The eigen-decomposition of is useful in obtaining a relationship between 

l?' and 6-' of 2.21 and 2.23. Let the positive real eigenvalues Xi of the 

14 



Figure 2.2: Adaptive antenna array with 4 auxiliary elements receiving a 
desired signal from broadside and a weak interference signal from 30" off 
broadside. 

15 



--. OUTPUT SlNR 

OUTPUT INR & SlNR VS FRAC 
20 

15 

10 

5 

z o  

-10 

-15 

2 -20 

-25 

-30 

-35 

FRAC 

Figure 2.3: Output INR and SINR of the 4-auxiliary element adaptive array 
versus fraction F .  SNR(main) = 14.6 dB, SNR(aux) = -10 dB, INR(main) 
= -5 dB, INR(aux) = -3 dB, OD = O", 011 = 30". 
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positive-definite Hermitian covariance matrix Cp be arranged in order of 

decreasing magnitude 

and let e; be the associated orthonormal eigenvectors. The desired eigen- 

expansions of Qi and r are 

N 
Cp = x e n e f A n ,  and 

n=l 

N 
r =  enef[Xn - Fa2] 

(2.25) 

(2.26) 
n= 1 

where the result C:., enef = I N x N  has been used in 2.26. The inverses 

needed in 2.21 and 2.23 can thus be written 

(2.27) 

(2.28) 

where it is easily demonstrated that 

the orthonormality of the ej. 

= IT-* = I using 2.25-2.28 and 

Additional observations can be made about the modified SMI weights 

by defining two subspaces of complex N-dimensional space C N  as 

where s p  denotes span and I is the orthogonal complement. Subspace 

S, the span of the signal vectors, is commonly called the signal subspace, 
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whereas n/ is called the noise subspace. The noise subspace has dimension 

2 1 since it is assumed that N 2 M + 2. From 2.14 and the definition of 

eigenvectors 
/ M  \ 

(2.30) 
/ 

for 1 5 n 5 N. Notice that any member of n/ is an eigenvector of CP since 

for any such vector V E n/ we have SEV = SEV = 0. From here we may 

conclude that e, E n/ for exactly N - M - 1 values of n since if there were 

less, could not 

span S. The assumption is made that no two signal vectors are colinear (i.e. 

the signals arrive from different directions). Furthermore, the eigenvalue 

associated with every such e, is the noise power u2 as seen in 2.30. For this 

reason, these N - M - 1 eigenvectors are called noise eigenvectors. Hence 

the name noise subspace for n/. 

could not span h/ and if there were more, 

The remaining M+1 eigenvectors of CP must be in the M + 1  dimensional 

subspace S, and are referred to as the signal or principal eigenvectors. The 

eigenvalues associated with these principal eigenvectors are real and greater 

than or equal to u2. This result follows from the fact that a principal 

eigenvector of CP with u2 > 0 is also a principal eigenvector of the same CP 

with c2 set to zero. The noiseless 4e is still nonnegative definite. 

Since the eigenvalues were ordered from largest to smallest in 2.24, we 

have from the above argument that {e,}E$' are the principal eigenvectors 

with associated eigenvalues A, 2 u2 and {e , } r=M+2 are the noise eigenvec- 

tors with associated eigenvalues A, = u2.  
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Now substitute 2.28 in 2.23, to see that the modified SMI weights are 

(2.31) 

a linear combination of the eigenvectors of a. In fact, since e z S D  = 0 for 

n = M+2, M+3, .  . . , N, the weights are ideally a linear combination of only 

the principal eigenvectors. In Section 3.3 we shall see the effects of using 

just the first M + 1 terms of 2.31 in the SMI array computer simulation. 

2.4 Instructive Example 

To better appreciate the modification made to CP in 2.22 lets compare the 

expressions for Ws and W for a particular scenario. Using 2.21, 2.23, 2.27, 

and 2.28 and some algebra, Gupta [l] with reference to Compton 181 showed 

that for the case of no desired signal and a single CW interference signal 

of amplitude A incident on an N-element array, the optimal weight vectors 

can be written 

and 

(2.32) 

(2.33) 

where a1 = e r S o .  For a weak signal and not too many elements, N A 2 / a 2  << 
1 so that 2.32 and 2.33 become 

and 

(2.34) 

(2.35) 
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where F has been chosen such that (1 - F ) a 2 / ( N A 2 )  << 1. It is seen from 

2.34 that using the standard SMI weights W simply scales the quiescent 

pattern of the array and thus fails to achieve the goal of adapting to the 

interference signal. On the other hand, for an appropriate choice of the 

fraction F, the modified weights result in an antenna pattern which does 

adapt to the signal scenario since el contains interference signal direction 

information. 

2.5 Summary 

In this chapter, we have seen that the modified SMI algorithm is designed to 

maximize a modified SINR which leads to increased interference suppression 

as F is increased from zero to one. The eigenstructure of 9, which was 

analyzed in detail, has led to a useful geometric interpretation of the SMI 

algorithm and has prompted us to investigate in the next chapter the effects 

of omitting the noise eigenvectors from the weight expression of 2.31. 

Up to this point, knowledge of the true covariance matrix 9 has been 

assumed. In practice, however, @ must be estimated by an average involving 

a finite number of signal samples. The next chapter addresses through 

theory and simulation a number of topics concerning the performance of 

the modified SMI algorithm when only estimates of @ are available. 
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Chapter 3 

Modified SMI Array 
Performance with Estimated 
Covariance 

This chapter studies the effects of covariance matrix estimation on the 

performance of the modified SMI antenna array. The first section simply 

introduces the particular K-snapshot-based covariance estimate 4~ used 

in this study. The next section presents a theoretical statistical analysis 

of modified SMI array performance using the estimate &, in the place 

of CP in 2.22. Much of this analysis will be independent of the assumed 

signal model. Only at the end of the analysis is a particular signal model 

(corresponding to our satellite communication application) assumed. 

Computer code has been developed which simulates a real modified SMI 

array operating in the satellite signal environment and, in addition, imple- 

ments the results of the statistical analysis for comparison purposes. The 

signal model used in the computer simulation code is described. Simula- 

tions are then used to discuss the estimation of a2, to verify the statistical 
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theory and comment on the choice of the fraction F, to study the effects of 

omitting the noise eigenvectors from the weight estimate (as proposed at 

the end of Section 2.3), and finally to characterize the types of error in the 

estimated covariance matrix. 

3.1 Sample Covariance Matrix 

In a real system, the true covariance matrix is unknown and must be esti- 

mated by averaging a number of signal snapshot outer products. A snapshot 

Xk is an N-vector of samples resulting from a simultaneous sampling of the 

N antenna element signals. The estimate of the true covariance matrix is 

called the sample covariance matrix. In particular, the maximum likelihood 

estimate ([9], Theorem 4.1) 

i K  

of 0 given K snapshots and no knowledge of the signal environment is used 

here. 

3.2 Statistical Analysis Results 

Ganz, Moses, and Wilson [7] have provided a statistical analysis of the 

modified SMI weight and power estimators assuming that the true noise 

power v2 ,  true steering vector So, and sample covariance matrix @K are 

used in 2.22. The results of the analysis are presented here. It is explained 

how one can apply much of this work to any signal scenario including 

wideband signals. Specific results have been obtained for a narrowband 

22 



(sinusoidal) scenario consisting of one desired signal and M interference 

signals arriving from arbitrary directions at an equi-spaced linear array of 

elements of arbitrary gain and spacing. The notation introduced in Sections 

2.1 and 3.1 is used. 

The statistical results consist of bias and variance expressions which 

describe the convergence properties of the array weights and output signal 

powers as a function the number of snapshots K, the choice of fraction F, 
and the signal scenario. The expressions have been implemented in the 

computer simulation so that curves representing expected value and confi- 

dence intervals might overlay “trial runs” of the simulated array. Agreement 

between the statistical curves and the trial runs would build confidence in 

the derivation and implementation of the statistical curves as well as in 

the implementation of the array simulator. In fact, the statistical curves 

characterize the transient performance of the array and thus may be used 

in place of expensive, time-consuming Monte Carlo simulations. Further- 

more, it is hoped that the statistical curves might act as a standard with 

which other weight adaptation schemes may be compared. 

It is desired to analyze the performance of the modified SMI array whose 

weights are based on K snapshots, thus this presentation begins with 2.22 

restated below. The optimal modified SMI weight vector W and its K- 

snapshot-based estimate W K  are 
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and 

where r G CP - Fa21 and f, G 4~ - Fa21 are the optimal and estimated 

values of the modified covariance matrix and &K is given by 3.1. Define the 

error r? l~ in the K-snapshot-based weight estimate and modified covariance 

estimate error f ' ~  by 

and 

The error in the modified and unmodified covariance is the same. The 

expected value and variance of the K-snapshot-based weights can easily be 

expressed as 

E [ W ]  = W-E[Tir] (3.6) 

v..[W] E E [(W - E[*])(* - E[*])H] 

= var[W] 

= E[WWH] - E[W]E[W]H (3.7) 
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where the subscripts K have been omitted for simplicity. The output signal 

powers of an array given a set of K-snapshot-based weights are 

where J = D ,  Im,  or 7, for desired, mth interference, or noise power, 

respectively. The expected value and variance of the output signal powers 

are 

E [ Q  = E[WH@JW] 

= E[(W - W ) H @ J ( W  - W ) ]  
= PJ - E[W]H@JW - WH@JE[W] + E[WH@JW] (3.9) 

and 

where Re denotes real part and J is as before. Note that 3.6, 3.7, 3.9, 

and 3.10 express the desired quantities in terms of the statistics of r?l and 

that is a function of &JK,  an average of K ( N  x N) random variables. 
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I .  

By the Central Limit Theorem, @ approaches a Gaussian random variable 

for reasonably large K. Under the Gaussian assumption, the higher order 

statistics of W needed for the first and third terms of 3.10 may be found 

[6] in terms of its first and second order statistics. 

The problem has now been reduced to finding E[@], E[@wH], and 

E [ @ @ T ] .  Evaluation of these expectations is accomplished by first manip- 

ulating F-1 using 3.5 

Now rewrite 3.4 by factoring I?-' to the front, substituting for fi-' using 

3.11, and expanding [I - fY1] as a power series [5]. The resulting weight 

error may be written 

W = , . r l [ I  - {I + Fr-' + (Fr-1)2 + . .)]so. (3.12) 

The desired expectations are 

E[@] x -r-l~[Fr-lf]w, (3.13) 

E[T?rwH] x r-'E[( f W)(  f 'W)H] ( and (3.14) 

E [WWT] M r -l E [  (Fw )( F w ) ~ ]  (r - l )T (3.15) 

where E[F] = 0 and W = pI"-lSD have been used. The approximations 

result from neglecting terms involving higher powers of f .  The approxima- 

tions are justified at the end of this section. Using 3.5, it is easy to write 
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3.13-3.15 in terms of E[&;&], the expected value of the product of the ilth 

and sith elements of the K-snapshot-based covariance error matrix. 

The statistical results presented to this point have been very general in 

that they have been derived independent of any assumed signal scenario. 

Only now, for the calculation of E[&il&zt], must a scenario be assumed. In 

order to apply this work to different signal scenarios one evaluates E[&il&zt] 

for the scenario of interest. The power series expansion of 3.12 and the 

approximations of 3.13-3.15 are valid for any signal scenario when K is 

large enough. 

For the case of one sinusoidal desired signal, and M sinusoidal interfer- 

ence signals arriving from arbitrary directions at an N-element equi-spaced 

linear array with complex Gaussian noise, N ( 0 , a 2 ) ,  at each element, the 

expectation is [7] 

M M  

where Stl is the Kronecker delta. Note that E[4;14ta] = E[&ii@zt] since 

and &K are Hermitian symmetric. 
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The justification for the approximations used in 3.13-3.15 is now ap- 

parent. Expectations involving higher powers (3 or greater) of f' require 

higher order statistics of &. By the Central Limit Theorem, the elements of 

& are approximately Gaussian for K large enough. By 3.16, the E[&;l&3 

are 0(1/K). Using familiar expressions [6] for higher order statistics of 

Gaussian random variables it follows that such terms are o ( l / K )  and thus 

are justifiably neglected for K large. 

It should be mentioned that of all six terms in 3.10 for v a ~ [ - f s ]  only 

the fifth is proportional to ( 1 / K )  whereas each of the others has 0(1/K2) 

contributions. It was found necessary to include in the computer code the 

0(1/K2) terms of 3.10 (in addition to the fifth term) in order to yield 

accurate confidence intervals for the K values of interest. 

In summary, the estimated weights and resultant output powers are 

asymptotically unbiased and consistent. The biases of the weight and power 

estimators decrease at a rate proportional to ( 1 / K )  while the asymptotic 

standard deviations decrease at a rate proportional to (l/fl). 

3.3 Computer Simulation and Observations 

3.3.1 Signal Snapshot Model 

The simplified model of the signal snapshot X k  of 3.1 used in the computer 

simulation reflects the satellite/earth station communication link applica- 

tion. A series of snapshots is not simulated by evaluating the signal vector 

of 2.1 at equally-spaced times since the time between snapshots can vary 

in a real array. To account for this, the phases of signals have been decor- 
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related from snapshot to snapshot resulting in a model of the form 

M 
xk = X D k  + X q k  + X I m k  (3.17) 

m=l 

for the case of M interference signals, where 

X J k  = AJUJ exp( j @ J k )  J = D ,  I l ,  12, . . ., or I M  (3.18) 

The AJ and UJ were defined in 2.7 and 2.8, the p J k  are uniformly distributed 

random variables on the interval [0,2n], and the Vnk are complex zero- 

mean Gaussian random variables of variance $. All random variables are 

mutually independent. The steering vector So = A D U D  is assumed to be 

known exactly. 

, 

The estimated modified weights based on K snapshots are 

from 2.22 with the covariance estimate 4, of 3.1 replacing the true covari- 

ance a. The constant p of 2.22 is chosen as unity. Note that the constant 

p simply scales the weights and powers by p and p2, respectively, and has 

no effect on power ratios such as the MSINR of 2.20. Since the Gaussian 

noise random variables ?l,k are computer generated, their true variance u2 is 

known to the programmer and will be used, at first, in implementing 3.20. 

Subsequently, a2 will be estimated by the minimum eigenvalue ci2 = i~ of 

4, in order to more realistically model an actual SMI antenna array. 
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3.3.2 Interpreting the Plots 

The modified SMI algorithm has been implemented on a VAX 11-785 com- 

puter using the above snapshot model and statistical analysis results. The 

code yields plots of the weights, output powers and power ratios, and Sam- 

ple covariance matrix eigenvalues versus the number of snapshots used in 

the covariance estimate for a particular fraction F. Specifically, a typical 

plot consists of 

1. a number of “trial runs” of the simulated array which appear as jagged 

lines, 

2. a straight horizontal line giving the value (as found in Section 2.2) of 

the performance measure assuming the true covariance is known, 

3. the expected value of the estimator which is a smooth curve that lies 

among the trial runs and asymptotically approaches the true covari- 

ance value, and 

4. two smooth curves (one above and one below the expected value 

curve) determined from the estimator variance that represent a 95% 

confidence interval ( f 2  standard deviations) for the estimator. 

See Figure 3.13 for a graph whose curves have been fully labeled. 

Some further comments to aid in the understanding of the following 

plots are in order. First, items 3 and 4 above appear only on Figures 3.2-3.15 

since the simulations shown on these figures are ones to which the theory 

of Section 3.2 applies. Second, graphs of SINR and INR do not include 
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items 3 and 4 above since expressions for bias and variance of power ratios 

are still being developed. Third, the “lower” variance curve sometimes 

does not appear on graphs of supressed interference power (Figure 3.10, for 

example) simply because the “warping” due to plotting in dB causes the 

curve to lie outside the range of the graph. Fourth, some graphs of desired 

signal power (for example, Figure 3.6) show confidence intervals that exhibit 

unusual behavior for small numbers of snapshots K. This behavior occurs 

in K-regions where the power variance estimate is negative. To account for 

negative variance estimates, recall that higher powers of F K  were neglected 

in Equations 3.13-3.15 of the statistical analysis. Since llf’~ll + 0 with 

probability 1 as K --f 00, neglecting these terms was equivalent to making 

a large K assumption. Furthermore, the number which is being estimated, 

the desired signal power variance, is itself a relatively small positive number 

as evidenced by the trial runs and the scale of the desired signal power 

graphs. For these reasons, the “unusual” behavior is not at all surprising. 

Finally, in several graphs (for example Figure 3.11) the scale of the graph 

is such that the curves are indistinguishably close. These “poorly”-scaled 

graphs are a result of the authors’ desire to keep the scale of comparable 

graphs the same in order to simplify comparisons. 

Keep in mind that any consistency or inconsistency between the trial 

runs and the statistical curves simply comments on the validity of the statis- 

tical derivations and perhaps the quality of the random variables generated 

in the trials. The plots may not accurately reflect how well the above statis- 

tical snapshot model represents the situation in a real antenna array. The 

investigation that follows is based on the same signal scenario and array 
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geometry introduced in Section 2.2. 

3.3.3 Estimating the Noise Power 

The statistical results of the previous section were derived assuming the 

true noise power u2 were known. Therefore, to be precise, the statistical 

curves should overlay simulations only when the true u2 (known to the pro- 

grammer) is used in 3.20. Using the true u2 could be numerically hazardous 

if it is the case that Fa2 is very close to AN,  the minimum eigenvalue of 4, 
since then f’ of 3.20 would approach singularity as is seen in 2.28 with the 

eigen-decomposition of f’ replacing that of r. 
Figure 3.1 is included in order to verify that the following simulations 

which use the true noise variance cr2 rather than fi, in 3.20 are numerically 

sound. Six trials runs were made with unity noise variance. The minimum 

eigenvalue f i ,  of &K is plotted as the number of snapshots K is increased. 

The figure shows that using the true u2 in 3.20 is numerically sound for 

F 5 0.9 and K 2 1500. In fact, it has been found that it makes very little 

difference in the simulation results whether true or estimated noise variance 

is used in 3.20 since is a “good” estimate of a2 for K and F values in 

the regions of interest, Thus, we can proceed with the understanding that, 

in these regions of interest, the statistical theory developed in the previous 

section applies independent of whether true or estimated noise variance is 

used in the weight estimate equation 3.20. 
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Figure 3.1: Six trials showing the minimum eigenvalue of 8?K approach- 
ing the true noise variance 6' = 1 as the number of snapshots K in the 
covariance estimate increases. 
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3.3.4 Varying the Fraction F 

The scenario of Section 2.2 is used in all that follows. Let us begin by 

observing the performance of the modified algorithm for different values 

F. Figures 3.2, 3.3, and 3.4 are plots of the output INR and SINR where 

F = 0, F = 0.8, and F = 0.9, respectively. Four typical trial runs were 

made for each value of F. The same set of noise seeds were used for each 

plot for purposes of comparison. Remember that F = 0 corresponds to 

standard SMI. These figures demonstrate the degradation in the SINR as 

F is increased. They also suggest that the increased interference suppres- 

sion comes at the price of having to increase the number of snapshots in the 

covariance estimate to achieve that suppression. For example, comparing 

3.2 and 3.3 we see that setting F = 0.8 increases interference suppression 

by about 12dB compared to standard SMI although it takes approximately 

30,000 more snapshots to get that additional suppression. For an applica- 

tion in which the signal environment changes sufficiently fast, increasing K 

may not be practical. In the application considered here, however, it may 

very well be practical. 

Rather than look at power ratios let us back up and look at the powers 

themselves in order to see where the problem lies. Figures 3.5-3.7 show 

the desired signal power Po of 3.8 for F = 0, F = 0.8, and F = 0.9, 

respectively. Similarly, Figures 3.8-3.10 and Figures 3.11-3.13 show the 

interference powers and noise powers, respectively. The statistical bias 

and 95% confidence intervals resulting from the statistical analysis of the 

previous section overlay the four trial runs and the infinite snapshot curve, 

34 



20 

15 

10 

5 

0 

-5 

-1 0 

-1 5 

-20 

-25 

-30 

-35 

-40 

OUTPUT INR & SINR VS SAMPLE SIZE K 

1 
I- 

0 5 10 15 20 25 30 35 40 45 50 

SAMPLE SIZE K * loA 03 

Figure 3.2: Plot of output INR and SINR versus number of snapshots K 
for F = 0 shows 4 trials and straight line representing the infinite data 
(true covariance) case. 
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Figure 3.3: Plot of output INR and SINR versus number of snapshots K 
for F = 0.8 shows 4 trials and straight line representing the infinite data 
(true covariance) case. 
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Figure 3.4: Plot of output INR and SINR versus number of snapshots K 
for F = 0.9 shows 4 trials and straight line representing the infinite data 
(true covariance) case. 
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Figure 3.5: Plot of output desired signal power Po versus number of snap- 
shots K for F = 0.0 shows 4 trials, true covariance curve, bias curve, and 
95% confidence interval. 

38 



0.1 

0.05 

0.0 

-0.05 

a -0.1 s 
2 
5 
9 -0.2 
z 

-0.15 

a 

-0.2F 

-0.3 

-0.35 

-0.4 

OUTPUT SIGNAL POWER VS SAMPLE SIZE K 

5 10 15 20 25 30 35 40 45 50 0 

SAMPLE SIZE K *loA 03 

Figure 3.6: Plot of output desired signal power Po versus number of snap- 
shots K for F = 0.8 shows 4 trials, true covariance curve, bias curve, and 
95% confidence interval. 
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Figure 3.7: Plot of output desired signal power Po versus number of snap- 
shots K for F = 0.9 shows 4 trials, true covariance curve, bias curve, and 
95% confidence interval. 
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In all cases the statistical curves and the trial runs seem to agree rather 

well. The plots show that the bias and variance of the output powers tend 

to increase with the fraction F. The inaccuracy of the desired signal power 

variance curves for small K in Figures 3.6 and 3.7 are probably explained 

by the neglect of o ( l / K )  terms in 3.13-3.15 and o ( l / K 2 )  terms in 3.10. 

That the inaccuracy should be apparent only in the desired signal power 

is not surprising since based on the trials runs this variance is much smaller 

than those for the interference and noise powers causing inaccuracies to be 

more evident. 

The outstanding feature of this group of plots is the comparatively large 

bias and variance of the interference signal power. Specifically, for F = 0.9, 

after 50,000 snapshots the difference between the upper bound of the con- 

fidence interval and the infinite snapshot interference level is about 7.5 db 

whereas it is only 1.25dB and 0.03dB for noise and desired signal powers, 

respectively. The explanation is intuitive from an array pattern viewpoint. 

Since the modified SMI algorithm is designed to maximize MSINR it will 

“try” to form a pattern null in the interference signal direction. As a re- 

sult, the gain of the pattern in the interference direction and therefore the 

interference power will be extremely sensitive to inaccuracy in the covari- 

ance estimate. In fact, as F is increased the null should steepen and the 

interference power bias and variance should increase. On the other hand, 

the slope of the pattern in the desired signal direction should be small since 

the pattern maximum occurs near this direction, hence, the small variance 

in the desired signal power. If the environment changes slowly, as it does 

in the satellite communication application, then perhaps the present per- 
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Figure 3.8: Plot of output interference signal power PI versus number of 
snapshots K for F = 0.0 shows 4 trials, hue covariance curve, bias curve, 
and 95% confidence interval. 
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Figure 3.9: Plot of output interference signal power PI versus number of 
snapshots K for F = 0.8 shows 4 trials, true covariance curve, bias curve, 
and 95% confidence interval. 
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Figure 3.10: Plot of output interference signal power PI versus number of 
snapshots K for F = 0.9 shows 4 trials, true covariance curve, bias curve, 
and 95% confidence interval. 
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formance is satisfactory. However, we shall proceed under the assumption 

that it is desirable to require fewer snapshots to achieve a certain level of 

performance. 

3.3.5 Omitting Noise Eigenvectors from the Weight 
Expression 

Recall from Section 2.3 that the true SMI weights can be written as a 

linear combination of the eigenvectors of the true covariance Qi 2.31 and 

that ideally the weights depend only on the true principal eigenvectors. We 

can take advantage of this a priori knowledge by truncating the sum in 

2.31 so as to include just the principal eigenvectors (i.e. change the upper 

limit from N to M+l) .  The hope is that by excluding the noise eigenvector 

estimates, the pattern null in the interference direction may be more stable 

and hence better interference power performance may result. Of course, 

one may also argue that the estimated noise subspace #K corresponding 

to the covariance estimate &K will actually have non-zero projection onto 

the true signal subspace S and so excluding the noise eigenvector estimates 

may degrade interference power performance. 

The results of the truncation are interesting. Figures 3.14 and 3.15 show 

the weights on the main and first auxiliary elements, respectively, with all 

eigenvectors included and F = 0.8. These are the weights that led to Fig- 

ures 3.3, 3.6, 3.9, and 3.12. Figures 3.16 and 3.17 are the same weights 

except that only the principal eigenvectors have been used. Comparing 

the figures we see that without the noise eigenvect,ors the array weights 

have indeed converged much more quickly. However, what really matters 
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Figure 3.11: Plot of output noise power Pq versus number of snapshots 
K for F = 0.0 shows 4 trials, true covariance curve, bias curve, and 95% 
confidence interval. 
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Figure 3.12: Plot of output noise power Pll versus number of snapshots 
K for F = 0.8 shows 4 trials, true covariance curve, bias curve, and 95% 
confidence interval. 
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Figure 3.13: Plot of output noise power P,, versus number of snapshots 
K for F = 0.9 shows 4 trials, true covariance curve, bias curve, and 95% 
confidence interval. 
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Figure 3.14: Real and imaginary parts of main element weight W1 versus 
number of snapshots K for F = 0.8 shows 4 trials, true covariance curve, 
bias curve, and 95% confidence interval. All eigenvectors are used in the 
weight expression. 
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Figure 3.15: Real and imaginary parts of first auxiliary element weight- W, 
versus number of snapshots K for F = 0.8 shows 4 trials, true covariance 
curve, bias curve, and 95% confidence interval. All eigenvectors are used in 
the weight expression. 
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Figure 3.16: Real and imaginary parts of main element weight I/V, versus 
number of snapshots K for F = 0.8 shows 4 trials and true covariance 
curve. Only principal eigenvectors are used in the weight expression. 
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Figure 3.17: Real and imaginary parts of first auxiliary element weight W2 
versus number of snapshots K for F = 0.8 shows 4 trials and true covariance 
curve. Only principal eigenvectors are used in the weight expression. 
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is the performance of the array with respect to the output powers. Figures 

3.18-3.20 show the output powers of the array corresponding to the "calm" 

weights based on only the principal eigenvectors. Compare these with Fig- 

ures 3.6, 3.9, and 3.12, respectively. Somewhat surprisingly, what seems 

to be a significant improvement in the weight performance has led to very 

little change in the desired and interference signal powers, although it has 

made the noise power performance ideal. 

To understand these observations, consider the desired and interference 

portions of the array output signal where the estimated weights of 3.20 

have been used. From 2.11, 2.4, 2.5, 2.16, and 2.31 we may write 

m=l L m=l J 

(3.21) 
m=l J 

where the c's are some unity-magnitude scalars and the true covariance 

eigen-decomposition has been replaced with its K-snapshot-based estimate. 

In the final expression, the third bracketed term contains the weight com- 

ponents (conjugate transposed) that are left out in the noise eigenvector 

truncation and thus the second line of the last expression gives the compo- 

nents of the output desired and interference signals that are excluded by 

the truncation. If the true covariance were used, the third bracketed term 

would be zero since e,"SD = 0 for M + 2  5 n 5 N. However, since estimated 
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eigenvectors are used, the third bracketed term is not zero and in fact is 

significant because of the small denominator A,, - Fa2.  Hence, upon omit- 

ting the noise eigenvectors the weights calmed down notably. Though the 

third bracketed term of 3.21 causes noticeable “jumpiness” in the weights, 

it multiplies an approximately orthogonal vector (the fourth bracketed term 

of 3.21) so that the second line of 3.21 is small. This observation explains 

why excluding the noise eigenvectors did not significantly affect the output 

desired and interference signal powers. From the array pattern perspective, 

excluding the noise eigenvectors from the array weight expression does not 

greatly affect the array pattern in the signal and interference directions. In 

almost all other directions, however, the pattern does “calm down” result- 

ing in the greatly improved noise power performance which we observed. 

In conclusion, although we cannot hope to significantly improve interfer- 

ence power performance by excluding noise eigenvectors from the weight 

estimate, we can significantly improve array performance with respect to 

output noise power. 

3.3.6 Characterization of Sample Covariance Errors 

Can the type of error occurring in the sample covariance matrix 6 K  be 

characterized? To address this question we express the sample covariance 

as 
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Figure 3.18: Plot of output desired signal power Po versus number of snap- 
shots K for F = 0.8 shows 4 trials and the true covariance curve. Weights 
were found using only the signal eigenvectors. 
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OUTPUT INTERFERENCE POWER VS SAMPLE SIZE K 
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Figure 3.19: Plot of output interference signal power PI versus number 
of snapshots K for F = 0.8 shows 4 trials and the true covariance curve. 
Weights were found using only the signal eigenvectors. 

56 



-6 

-7 

-8 

-9 

-1 0 

-1 1 

-1 2 

-13 

-1 4 

-15 

-1 6 

0 5 10 15 20 25 30 35 40 45 50 

SAMPLE SIZE K YO'' 03 

Figure 3.20: Plot of output noise power Pv versus number of snapshots K 
for F = 0.8 shows 4 trials and the true covariance curve. Weights were 
found using only the signal eigenvectors. 
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i K  

k=l 

(3.22) 

using 3.17, 3.18, and 3.19 in 3.1 with one interference signal (M = 1). 

The first line of the last expression approaches @ with probability 1 as 

K + 00 whereas the rest of the terms approach 0. We shall say that 

the second line consists of the desired-interference crossterms (DICT), the 

third line consists of desired-noise crossterms (DNCT), and the last line 

consists of interference-noise crossterms (INCT). Since the formation of 

&K is under the programmer’s control it is possible to observe the effect 

of a particular type of crossterm (for example DICT, DNCT, or INCT) by 

omitting the other crossterms of 3.22. Figures 3.21-3.24 show the power 

ratios and powers if the sample covariance matrix is formed as 9 K  = 90 + 
9 1 1 +  ( l /K) Cf., X,kX$. Similarly, Figures 3.25-3.28,3.29-3.32, and 3.33, 

show the results for forming &K = 9 + DICT, &K = 9 + DNCT, and 

&K = @ + INCT, respectively. 

A 

From Figures 3.21-3.24 we see that the error in the estimate of 9, causes 

only a moderate degradation in performance when compared to the “all- 
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Figure 3.21: Plot of output INR and SINR versus number of snapshots A’ 
for F = 0.8 and &K = @ D  + @I1 + (1/K) Cf==, X,,kX,$. Shows 4 simulations 
and the true covariance curve. 
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Figure 3.22: Plot of output desired signal power PD versus number of snap- 
shots K for F = 0.8 and &K = i l ? ~  + 4?11 + ( l /K)  Et='=, X+X$. Shows 4 
simulations and the true covariance curve. 
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Figure 3.23: Plot of output interference signal power PI versus number of 
snapshots K for F = 0.8 and 6, = @LI + @II + ( l /K)  E;=, X,kX$. Shows 
4 simulations and the true covariance curve. 
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Figure 3.24: Plot of output noise power Pt, versus number of snapshots Ii' 
for F = 0.8 and 6~ = 9 ~ + 9 z I  + ( l / K )  E:==, X,kX,Hk. Shows 4 simulations 
and the true covariance curve. 
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crossterms” performance shown in Figures 3.3, 3.6, 3.9, and 3.12. The 

performance of each power is degraded since any crossterms involving noise 

will alter both noise and signal eigenvectors of 6 ~ .  The power ratios for 

the INCT-only simulations appear in Figure 3.33 where only the sensitive 

interference powers are non-ideal. 

The above errors are relatively small because IIX,.,kll, llXrlkll << IIXDk(l 

since we are considering weak interference and 14.6dB SNR in the main 

element. By the same reasoning, one would argue that the performance 

degradation due to the DICT and DNCT should be relatively large since 

they both involve the desired signal and, in addition, should be of the same 

order since the interference and noise powers are about the same. This is 

somewhat the case as seen in Figures 3.25-3.32. Again, all powers are af- 

fected by the DNCT because noise is involved. Notice that the DICT which 

were used in Figures 3.25-3.28 seem to exclusively affect the interference 

power. One (as yet unjustified) explanation for this observation is that the 

DICT tend to alter the signal eigenvectors more than the noise eigenvec- 

tors. Small deviations in the signal eigenvectors can lead to big jumps in 

interference power since the interference enters the array in the vicinity of a 

null whereas the desired signal power may remain calm because the pattern 

maximum occurs near the desired signal arrival angle. 

Earlier it was implied that crossterms involving the desired signal tend 

to be relatively large because [ ( X D ~ I I  is relatively large. We can be more 

specific by noting that it is only the first element of X D k  that is large due to 

the high gain of the main array element required for a strong desired signal. 
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Figure 3.25: Plot of output INR and SINR versus number of snapshots 
K for F = 0.8 and &K = @ + DICT. Shows 4 simulations and the true 
covariance curve. 
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Figure 3.26: Plot of output desired signal power versus number of snapshots 
K for F = 0.8 and 6, = CP + DICT. Shows 4 simulations and the true 
covariance curve. 
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Figure 3.27: Plot of output interference power versus number of snapshots 
K for F = 0.8 and &K = CP + DICT. Shows 4 siniulations and the true 
covariance curve. 
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Figure 3.28: Plot of output noise power versus number of snapshots K for 
F = 0.8 and $ K  = @ + DICT. Shows 4 simulations and the true covariance 
curve. 
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Figure 3.29: Plot of output INR and SINR versus nuniber of snapshots 
K for F = 0.8 and &K = + DNCT. Shows 4 simulations and the true 
covariance curve. 
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Figure 3.30: Plot of output desired signal power versus number of snapshots 
K for F = 0.8 and 4, = @ + DNCT. Shows 4 simulations and the true 
covariance curve. 
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Figure 3.31: Plot of output interference power versus number of snapshots 
K for F = 0.8 and &K = @ + DNCT. Shows 4 simulations and the true 
covariance curve. 
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Figure 3.32: Plot of output noise power versus number of snapshots K for 
F = 0.8 and &K = @ + DNCT. Shows 4 simulations and the true covariance 
curve. 
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This observation in turn implies that the most harmful crossterms in 4~ 
should occur in its first row and first column. To test this, a simulation 

was run in which the covariance matrix was formed in the normal manner 

(i.e. with all of its crossterms) and then modified by replacing its first 

row and column with those of the true covariance a. The results of these 

simulations shown in Figure 3.34 represent near-ideal performance (only 

small interference power fluctuation) and thus serve to illustrate how a 

high-gain element is harmful. 

3.4 Summary 

The purpose of this chapter has been to study the performance of the 

modified SMI algorithm when the true covariance matrix is replaced by an 

estimate, as is done in practice. First, the sample covariance matrix was 

defined. Then, statistical theory based on the sample covariance matrix 

was developed in order to characterize the weight and output power perfor- 

mance of the modified SMI array with fraction F and K available snapshots. 

It was noted that much of this theory is applicable to any signal scenario 

including wideband signals. The simulations were introduced by describing 

the form of a signal snapshot. Next, the minimum eigenvalue of the sample 

covariance matrix was shown through simulation to be a good estimate of 

the noise power and hence can be used in practice to implement the diagonal 

subtraction required in the modified SMI algorithm. The statistical the- 

ory was tested by overlaying Monte Carlo simulations with expected value 

curves and confidence intervals for a particular weak interference scenario 
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and various choices of fraction F; good agreement was found. The obser- 

vation made in the previous chapter, that the true modified SMI weights 

are not dependent on the noise eigenvectors of the covariance matrix, was 

followed up in this chapter. Simulations showed that omitting the noise 

eigenvectors leads to greatly improved output noise power performance but 

the more crucial interference and desired signal powers are left unimproved. 

The chapter concluded by studying the severity of different cross-terms that 

comprise the error in the covariance matrix estimate. This study lent in- 

sight into the nature of the weight estimation problem and generated several 

handy rules-of-thumb. 
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Figure 3.33: Plot of output INR and SINR versus number of snapshots 
K for F = 0.8 and 4, = @ + INCT. Shows 4 simulations and the true 
covariance curve. 
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Figure 3.34: Plot of output INR and SINR versus number of snapshots K 
for F = 0.8 and 6~ simulated normally (all crossterms) but with its first 
column and row replaced with those of the true covariance CP. Shows 4 
simulations and the true covariance curve. 
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Chapter 4 

Conclusions 

This report has addressed the problem of suppressing weak interference 

signals while maintaining a strong desired signal by using an adaptive an- 

tenna array and a modified version of the SMI weight assignment algorithm. 

First, the array weights which maximize a modified SINR were derived. The 

modified SINR is parameterized by a fraction F. As F ranges from zero to 

one, the array weights range from the standard SMI weights which max- 

imize the standard SINR to weights which maximize SIR. By choosing F 

between zero and one, the suppression of weak interference can be signifi- 

cantly enhanced at the modest expense of a slight decrease in SINR. This 

behavior was analyzed in detail; in particular, the eigen-decomposition of 

the covariance matrix was used to better understand the properties of the 

modified SMI algorithm. 

In practical applications, the true covariance matrix must be replaced 

by an estimate formed from a number K of sample snapshot vectors. For a 

finite number of snapshots, the array weights are noisy and the performance 

of the modified SMI method will show a statistical fluctuation from its 
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nominal level. The bias and variance of the array weights and output 

powers as functions of the fraction F and the number of snapshots K were 

derived. These statistical measures allow a designer to determine what, 

for example, the expected output interference power of the system is as 

a function of the number of snapshots. It was found that, especially for 

fractional values F near one, it may take as many as 50,000 snapshots before 

the expected INR is close to the ideal (true covariance) INR with reasonable 

statistical confidence. The bias and variance estimates were compared with 

Monte Carlo simulations and good agreement was observed. 

In order to further understand the limiting causes of the degraded per- 

formance due to covariance matrix estimation, we studied the effects of 

each crossterm in the estimate. These crossterms are present whenever a 

finite number of snapshots are used in the estimate and they approach zero 

as the number of snapshots increases. It was found that crossterms involv- 

ing a strong signal lead to a large degradation in the array performance. 

Crossterms involving noise tend to degrade desired, interference, and noise 

power performance. Crossterms involving only signals (not noise) tend to 

substantially degrade interference power performance but not noise power 

performance. Finally, it was observed that elements in the covariance ma- 

trix which involve a high-gain array element (strong signal) tend to have 

the most harmful error. 

The results of this research provide the array designer with theoretical 

tools to characterize the finite-snapshot performance of the modified SMI 

system. These theoretical measures were shown to have good agreement 

with the results obtained by Monte Carlo simulation. Since Monte Carlo 
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simulation is computationally expensive, significant savings in computer 

time can be gained by taking advantage of the theoretical tools provided 

here. In addition, the theoretical formulas provide a means for analytical 

manipulations and can be used to investigate array performance as a func- 

tion of one or more system parameters; this is not possible with Monte 

Carlo simulation. 

The work described in this report suggests two future avenues for re- 

search. The first is experimental verification of the modified SMI algorithm 

on an actual antenna array system to confirm the practical usefulness of 

the theoretical performance measures. The second avenue of continued re- 

search involves finding ways of decreasing the number of snapshots required 

to achieve a given level of performance. The current modified SMI method 

was shown to provide acceptable performance for the satellite communica- 

tion problem using 50,000 snapshots. However, if further interference sup- 

pression is needed or if the signal environment is more rapidly changing, 

then alternate methods for weight estimation are needed. One promising 

method would directly estimate the parameters (amplitudes and phases) of 

the true covariance matrix given K received signal snapshots. This method 

would make use of additional a priori information concerning the signal 

scenario left unexploited by the modified SMI algorithm. 
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